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Abstract
Emphatic doctor-patient communication has been associated with improved psycho-physiological well-being involving
cardiovascular and neuroendocrine responses. Nevertheless, a comprehensive assessment of heartbeat linear and nonlinear
dynamics throughout the communication of a life-threatening disease has not been performed yet. To this extent, we studied
linear heartbeat dynamics through the extraction of time-frequency domain measurements, as well as heartbeat nonlinear
and complex dynamics through novel approaches to compute multi-scale and multi-lag series analyses: namely, the multi-
scale distribution entropy and lagged Poincaré plot symbolic analysis. Heart rate variability series were recorded from
54 healthy female subjects who were blind to the aim of the experiment. Participants were randomly assigned into two
groups: 27 subjects watched a video where an oncologist discloses the diagnosis of a cancer metastasis to a patient, whereas
the remaining 27 watched the same video including four additional supportive comments by the clinician. Considering
differences between the beginning and the end of each communication video, results from non-parametric Wilcoxon tests
demonstrated that, at a group level, significant differences occurred in heartbeat linear and nonlinear dynamics, with lower
complexity during nonsupportive communication. Furthermore, a support vector machine algorithm, validated using a leave-
one-subject-out procedure, was able to discern the supportive experience at a single-subject level with an accuracy of 83.33%
when nonlinear features were considered, dropping to 51.85% when using standard HRV features only. In conclusion,
heartbeat nonlinear and complex dynamics can be a viable tool for the psycho-physiological evaluation of supportive
doctor-patient communication.

Keywords Supportive communication · Multi-scale entropy · Distribution entropy · Lagged Poincaré plot · Pattern
recognition · Support vector machine

1 Introduction

Anxiety, apprehension, and feelings of nervousness are typi-
cal emotional responses associated with the communication
of a negative clinical diagnosis [2], including stress and
negative thoughts during its recall [2–5].
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Previous studies highlighted how social support given by
the clinician, including empathic communication, signifi-
cantly reduces the secretion of stress hormones [6, 7], while
improving patient’s cardiovascular and neuroendocrine (i.e.,
immune-mediated inflammatory processes) profile [8, 9].
Particularly, a reduced physiological arousal as estimated
through sympatho-vagal balance from heart rate variabil-
ity (HRV) was associated with supportive communication
after exposure to stress [10] rather than nonsupportive com-
munication. Also, a significantly reduced skin conductance
level during affective communication of the diagnosis of
incurable cancer was found with respect to the standard con-
dition [11]. Importantly, doctors also experience high stress
during the pre-news delivery phase of breaking bad news
interactions, as demonstrated by heart rate and electroder-
mal activity analyses [12]. Previous studies demonstrated

http://crossmark.crossref.org/dialog/?doi=10.1007/s11517-018-1869-1&domain=pdf
http://orcid.org/0000-0003-0453-7465
mailto: mimma.nardelli@for.unipi.it


www.manaraa.com

124 Med Biol Eng Comput (2019) 57:123–134

the link between electrodermal activity and stress, which
was elicited using well-known tests including Mannheim
Multicomponent Stress Test [13], and Stroop color word test
[14].

Despite the aforementioned evidences, to our knowledge,
no previous study has proposed a thorough assessment of
heartbeat linear and nonlinear/complex dynamics in sup-
portive vs. neutral doctor-patient communication. A proper
psycho-physiological assessment of cardiovascular dynam-
ics, in fact, should also account for measures with no intrin-
sic assumption of linearity (i.e., output of cardiac activity
proportional to input stressors) and time-invariant properties
[15], as suggested by recent reviews and guidelines [15–20].
Indeed, autonomic nervous system (ANS) control on cardio-
vascular activity has been widely recognized as nonlinear
[21]. The effect on heart rate of a given vagal stimulation
strongly depends on the “background level” of sympathetic
stimulation occurring at the same time [21]; therefore, a
vagal increase does not always result in a decrease of heart
rate.

In this study, we took inspiration from the experimental
protocol proposed by Sep et al. [11] to investigate ANS
response throughout time-frequency and nonlinear/complex
analyses of HRV series. Two groups of 27 women each
were emotionally elicited through two different videos
(ordinary vs. supportive) on a doctor-patient communication
of an incurable breast cancer diagnosis, while continuously
recording subject’s electrocardiogram (ECG).

To comprehensively assess the effect of emphatic doctor-
patient on heartbeat dynamics, we employed a multi-scale
version of Distribution Entropy (DistEn) [20], i.e., Multi-
scale DistEn (MDE), as well as a modified version of
symbolic analysis originally proposed by Porta et al. [41]
that is applied to lagged Poincaré plots (LPP), i.e., LPPsymb

[22]. Among the plethora of HRV measures quantifying
nonlinear and complex cardiac dynamics, in fact, DistEn
has been recently proposed as a complexity index with
a lower sensitivity to its free parameters than standard
sample entropy, and has been proven effective with ultra-
short time HRV series [20, 26]. Previous studies showed
that several psycho-physiological states different from rest-
ing state are often associated with distinctive alterations
in HRV multi-scaling properties, usually with an irregular-
ity decrease especially at high scales [19, 23, 24]. To this
extent, controversial findings were reported for heart-
beat complexity modulation by aging [23–25]. Traditional
entropy-based algorithms, as sample entropy and approxi-
mate entropy, quantify the regularity of a time series by eval-
uating the appearance of repetitive patterns [51]. The multi-
scale entropy (MSE) method is based on the rationale that
complex systems generally reveal long-range correlation
structures over multiple temporal scales [61–63]. Therefore,
MSE has been used to compare the degree of complexity

between different time series [51]. On the other hand, Dis-
tEn implements the concept of “spacial structure” and can
be considered as a measure of complexity also at the first
scale [20, 26]. The MDE method proposed here applies
the standard coarse-graining approach to the DistEn algo-
rithm [19]. We adopted this procedure to study how the
spatial complexity structure of a time series changes over
different time scales, therefore investigating whether higher
MDE scales may add further information about the complex
dynamics of the cardiovascular system.

Furthermore, the reliability of LPP and LPPsymb

approaches was demonstrated in RR interval series with a
duration of 1 min or even less [22, 31, 54]. Note that LPPs
were successfully employed to investigate changes in short-
and long-term variability of HRV during pathological con-
ditions, such as diabetes [27] and congestive heart failure
[28], as well as physiological responses to meditation [29]
and emotions [22, 30, 31].

To move beyond the group-level statistical analyses, in
this study, we also exploited the aforementioned HRV metrics
to automatically characterize the cardiac dynamics associated
with ordinary vs. supportive communication at a single-subject
level using nonlinear support vector machine (SVM) algo-
rithm, validated through the leave-one-subject-out (LOSO)
procedure. Methodological and experimental details, as well
as results, discussion, and conclusions, follow.

2Methods

2.1 Subjects recruitment, experimental protocol,
and acquisition setup

To experimentally analyze the impact of different styles
of communication, 60 healthy subjects were recruited at
the University of Verona, Italy. After a preliminary visual
inspection check, six signals, three from each group of sub-
jects, were excluded because of artifacts in the ECG record-
ing; thus, reported data regard 54 participants. In order
to avoid confounding gender effects, only women were
enrolled in the study. Eligible participants were able to
speak fluent Italian and did not have previous cancer history.
Subjects were randomly assigned to one of two groups of
27 participants: ordinary group (hereinafter, group O, aged
25 ± 8.8) and supportive group (hereinafter, group S, aged
26.1 ± 9.6). Each group was asked to watch one out of the
two versions of a scripted video-vignette of a bad news con-
sultation, in which physician’s communication differed only
for the presence of supportive comments. The randomiza-
tion sequence followed for the allocation of the subjects into
the two groups was generated using Stata 11.0 software. All
participants were blind to the aim of the study and the con-
dition they were assigned to. Participants’ recruitment was
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carefully performed and the two groups of participants were
comparable either in terms of socio-demographic charac-
teristics or clinical, personality, and communication pref-
erences. To verify the homogeneity of the groups in terms
of emotional regulation, the Interpersonal Reactivity Index
(IRI), which is a 28-item questionnaire measuring empathy
[32], was administered to each subject. This scale provides
four sub-scores; each of these sub-scales taps a separate
aspect of the global concept of empathy:

– IRI-Fantasy: the tendency of the respondent to shift
him/herself into feelings of fictional characters taken
from books, movies, or plays;

– IRI-Perspective-taking: the ability of the respondent to
adopt the perspective, or point of view, of other people;

– IRI- Empathic Concern: the tendency for the respondent
to experience feelings of warmth, compassion, and
concern for others undergoing negative experiences;

– IRI-Personal Distress: the capability to experience
feelings of discomfort and anxiety when witnessing the
negative experiences of others.

Since personality factors and mood states may affect
emotional processing and regulation, subjects’ anxiety level
was quantified using the Spielberger State-Trait Anxiety
Inventory (STAI) [60]. This scale is generally aimed at
determining whether subjects present anxiety as a stable and
persistent emotional state (trait anxiety), or as a temporary
condition elicited by exogenous stimuli (state anxiety). Both
STAI-trait and STAI-state questionnaires were administered
before the experiment, whereas the STAI-state test only was
administered after the video.

Both groups were asked to watch a video. Throughout
this video, a middle-aged male physician disclosed the
diagnosis of a breast cancer metastasis to a 42-year-old
woman, who was accompanied by her husband. Diagnosis,
prognosis, technical details, consequences of the palliative
treatment, and life expectancy were discussed during the
physician-patient consultation. The dialog was preceded by
a scene in which the patient introduces herself and expresses
her feelings towards the upcoming consultation (priming
scene), to facilitate the identification of the participants with
the video-patient. The contents of both O and S videos were
identical concerning the provided information, with the only
difference of four additional supportive comments which
started to be expressed at 5:35, after the beginning of the S
video. Such comments were as follows:

– “But whatever action we do take, and however that
develops, we will continue to take good care of you. We
will be with you all the way.”

– “We will do and will continue to do our very best for
you.”

– “And whatever happens, we will never let you down.
You are not facing this on your own.”

– “I completely understand your reluctance. We’ll look at
this decision together carefully and we’ll pay attention
to your concerns.”

In addition, both videos were anticipated and followed by
4 min of aquarium images, which were used as neutral
visual elicitation sessions to promote the relaxation of the
subjects. This allowed to gather stable physiological record-
ings at resting state. The ordinary-communication video
lasted 9 min and 41 s; the duration of the supportive-
communication video was 10 min and 19 s. No so-called
filler communication was used to compensate for the differ-
ence in length between videos as it could not be ordinary
and subject’s reaction to the video could unintentionally be
influenced.

Throughout the experimental protocol, ECG signals
were recorded by means of ECG100C Electrocardiogram
Amplifier from BIOPAC Inc., with a sampling rate of
500 Hz. To obtain the RR series from the ECG, we used
the automatic algorithm developed by Pan-Tompkins [33].
Artifacts and ectopic beats were corrected through the use
of Kubios HRV software [34]. In Fig. 1, an overview of the
experimental protocol is shown.

2.2 Methodology of signal processing

HRV processing was applied considering the following time
windows:

– Vid1, including the first 110 s of the doctor-patient
communication, after the 4 min of aquarium;

– Vid2, including the last 110 s of the doctor-patient
communication, before the last 4 min of aquarium. For
the group S, this window corresponds to the session

Subjects 
Recruitment

Randomization
(Stata 11.0 so�ware)

Psycho-cognitive 
tests (IRI)

Group S

Group S

Aquarium Aquarium

Aquarium Aquarium

ECG recording (BIOPAC MP150)

Priming + Ordinary Consultation

Priming + Supportive Consultation

Group O

Group O

Fig. 1 Overall scheme of the experimental protocol. O, ordinary
communication; S, supportive communication
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immediately after the supportive comments provided by
the doctor.

From each RR series, we extracted features quantifying car-
diac linear and nonlinear dynamics. Concerning the latter,
two methods were used: multi-scale distribution entropy
(MDE) and lagged Poincaré plots and symbolic analysis
LPPsymb.

2.2.1 HRV standard features

Standard HRV measures are defined in the time and
frequency domains.

Two features were computed in the time-domain: the
mean value (RR mean) and standard deviation (RR std) of
the RR intervals [35].

Features defined in the frequency domain were calcu-
lated using the Smoothed Pseudo Wigner-Ville Distribu-
tion [36]. On the time-frequency representation, using a
nonoverlapping 5-s sliding window, we took into account
the median power spectral density within low frequency
bandwidth (LF power), ranging between 0.04 and 0.15 Hz,
and the median power spectral density within high-
frequency bandwidth (HF power), comprising frequencies
between 0.15 to 0.4 Hz [53]. Then, we computed the fre-
quency with maximum amplitude (LF peak and HF peak),
the powers of LF and HF bands in normalized units, i.e.,
LF power n.u. (

LF power
LF power + HF power ) and HF power n.u.

(
HF power

LF power + HF power ), and the ratio between LF power and

HF power (
LF power
HF power ) [35]. In this study, we consider there-

fore a total of nine standard HRV features.

2.2.2 HRVmulti-scale distribution entropy

A total of nine features were investigated by exploiting the
theory of DistEn [20, 37].

DistEn is a measure of complexity, and is calculated
starting from the empirical probability distribution function.

Specifically, for a given time series of N samples
{u(i), 1 ≤ i ≤ N}, DistEn algorithm is computed as
follows:

– The phase-space of the system represented by the time
series u(i) is reconstructed through the embedding
dimension m, (N − m) vectors Xm

i built from the
original series as follows:

Xm
i = u(i), u(i + 1), . . . , u(i + m − 1), 1 ≤ i ≤ N −m.

– Considering each vector Xim, the distances between
this vector and every vector Xm

j are computed using the
formula of the Chebyshev distance:

dm
ij = max |Xm

i − Xm
j | : 1 ≤ j ≤ (N − m), j �= i (1)

The distance matrix D is constructed using the
distances dij . The total amount of elements in the
distance matrix D except its main diagonal is therefore
(N − m) × (N − m − 1) [20].

– The histogram approach is used to estimate the empir-
ical probability distribution function. The elements of
D are divided into B bins and the corresponding his-
togram is obtained. At each bin t (t = 1, . . . , B) of the
histogram, its probability pt is computed as

pt = count in bin t

total number of elements in matrix D
(2)

To reduce bias, elements with i = j were excluded
from the estimation of the empirical probability
distribution function.

– The DistEn of u(i) is computed by normalizing the
classical Shannon Entropy:

DistEn(m, B) = − 1

log2(B)

B∑

t=1

pt log2(pt ) (3)

where m is the embedding dimension, B is the number
of bins used to construct the histogram, and pt is the
probability of each bin in the histogram.

In this study, we applied the DistEn algorithm in a multi-
scale fashion; therefore, using a coarse-graining process.
Coarse-grained time series were constructed from the
original RR series by averaging the data points within
nonoverlapping windows of increasing length, τ .

Given the time series {u1, . . . , ui, . . . , uN } and a scale
factor τ , each element of a coarse-grained series {y(τ)} is
calculated using the equation:

y
(τ)
j = 1

τ

jτ∑

i=(j−1)τ+1

ui, 1 ≤ j ≤ N/τ (4)

The length of each coarse-grained time series is equal to the
length of the original time series divided by τ .

DistEn algorithm was demonstrated to be a reliable mea-
sure of complexity for ultra-short series [20, 26]. However,
given the duration of the RR interval series considered in
our experimental protocol (110 s), we explored only the
first three scales, i.e., using a range of τ between 1 and
3. For each τ , we calculated the value of DistEn of the
corresponding scaled series. Also, the mean of Disten values
in the three scales (MDEmean) was considered as descriptor
of changes in heartbeat dynamics.

2.2.3 HRV lagged Poincaré plots and symbolic analysis
(LPPsymb )

A scatterplot of the lagged RR interval series, RRn+M ,
against the series RRn, was built along different lags M ,
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using the range 1 ≤ M ≤ 30. According to the ellipse-
fitting technique, for each M value, an imaginary ellipse is
fitted on the scatterplot and used to extract some geometrical
parameters [22, 31, 38]:

– SD1: the standard deviation of the points calculated
along the direction perpendicular to the line-of-identity
RRn+M = RRn;

– SD2: the standard deviation of the points along the
line-of-identity RRn+M = RRn;

– SD12 (SD12 = SD1/SD2): the ratio between SD1 and
SD2;

– S (S = π × SD1 × SD2): the area of an imaginary
ellipse with axes SD1 and SD2 [39, 40].

To minimize the loss of information by accounting for
the phase space points which are outside the ellipse, we here
propose two novel LPP quantifiers: namely, the mean (Md )
and the standard deviation (Sd ) of the distances between all
the points of each phase space point and its centroid. At each
lag, the centroid Cd was defined as follows:

{
Cdx = 1

N−M

∑N−M
n=1 RRn

Cdy = 1
N−M

∑N
n=M+1RRn

(5)

where N is the total number of RR intervals in the series.
Once the geometrical distances dPn between all the phase

space points Pn of the Poincaré plot and the centroid
were calculated, we computed the mean and the standard
deviation of the distribution of these distances:

Md = 1

N − M

∑N−M

n=1
dPn

Sd =
√∑N−M

n=1 (dPn − Md)2

N − M − 1
(6)

In Fig. 2, the LPP quantifiers are shown: on the left, we
report an example on the ellipse-fitting approach, with the
two axes (SD1 and SD2); whereas on the right one, distance
dPn between a LPP point and the centroid is traced. Finally,
to quantify changes in LPP trends throughout different lags

Table 1 Summary of the HRV features used in this study

HRV features

Standard analysis Time domain RR mean

RR std

Frequency domain LF peak

HF peak

LF power

HF power

LF nu

HF nu

LF/HF

Nonlinear analysis MDE MDE1

MDE2

MDE3

MDEmean

LPPsymb SD1LPPsymb

SD2LPPsymb

SD12LPPsymb

SLPPsymb

MdLPPsymb

SdLPPsymb

M , we applied a modified version of the original symbolic
analysis method proposed by Porta et al. [41].

After extracting the LPP quantifiers over the first 30 lags,
we divided the amplitude range of each Md and Sd (as well
as the other LPP parameters) in ψ = 12 equal levels, with a
resolution of (RRmax-RRmin)/ψ . We then assigned a symbol
from 0 to 11, from the lowest to the highest, to each level.

The technique of the delayed coordinates was used to
transform the RRψ series into a sequence of patterns of
L = 3 symbols: RRψ,L = {RRψ,L(i), i = L, . . . , N} with
RRψ,L(i) [RRψ (i), RRψ (i - 1), . . . , RRψ (i - L + 1)].
Then, the variability in the amplitude of LPP quantifiers
over the lags was categorized by counting the total number
of three-symbol patterns with at least one variation in the
symbol values. We evaluated the rate of occurrence of these
patterns by computing their percentage in relation to the

Fig. 2 An example of LPP
quantifiers for the first lag
(M = 1). In the left panel, the
ellipse-fitting approach is shown
with the two axes (SD1 and
SD2); whereas on the right
panel, the distance dPn between
a LPP point and the centroid
is traced

Pn
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Fig. 3 Graphical representation
of DistEn values as a function
of B. Median and MAD values
of DistEn are shown in the left
column, whereas CV% is
reported on the right column
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total number of patterns. Therefore, as features, a total of
six relative rates of the occurrence of three symbol patterns
with at least one variation were extracted from a given RR
interval series, one for each LPP quantifier: SD1, SD2, S,
and SD12, as well as Md and Sd .

Table 1 lists the HRV features used in this study.

2.2.4 Statistical analysis

We computed two kinds of statistical analyses: an inter-
group comparison to investigate differences between the
two groups (O vs. S) on IRI and STAI psychological scores,
and an intra-group comparison between Vid1 and Vid2 ses-
sions within each group on HRV metrics. Mann-Whitney

Table 2 Summary of MDE and LPPsymb parameters used to generate
complexity markers

Symbol Description Value

MDE parameters m Embedding dimension 2

B Equally spaced bins in 256

which the distance

matrix D is divided

τ Scale factor 1 ≤ τ ≤ 3

LPPsymb M Number of lags 1 ≤ M ≤ 30

parameters ψ Equally spaced levels 12

in which the amplitude

range is divided

L Number of symbols for 3

each patterns

nonparametric test was used to assess inter-group differ-
ences, whereas Wilcoxon nonparametric tests to assess
intra-group ones. All p values obtained through multiple
comparisons have been corrected using an adaptive linear
step-up procedure to control false discovery rate [47]. Note
that the session Vid2 corresponds to the time right after the
empathic comments in the video watched by the S group.

2.2.5 Pattern recognition

Pattern recognition analysis aimed to automatically discern
the cardiovascular dynamics associated with emphatic vs.
standard doctor-patient communication at a single-subject
level. Each HRV feature calculated within session Vid2
was normalized by subtracting the corresponding value
calculated within Vid1, and taken as an input of the
classification algorithm.

We chose a C-SVM [42] with a sigmoid function kernel,
validated through a LOSO procedure. A feature selection
procedure, including a correlation bias reduction strategy
within the training set of N−1 subjects, where N is the total

Table 3 Statistical results from Mann-Whitney tests on IRI scores

Group O Group S p value

(median ± MAD) (median ± MAD)

IRI-fantasy 26 ± 4 25 ± 2 0.18

IRI-Empathic 28 ± 3 29 ± 2 0.43

concern

IRI-Perspective-taking 23 ± 3 26 ± 3 0.08

IRI-Personal distress 18 ± 3 19 ± 3 0.22
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Table 4 Statistical results from Mann-Whitney statistical tests on
STAI scores related to the questionnaires filled before and after the
experiment

Group O Group S p value

(median ± MAD) (median ± MAD)

PRE STAI-State 37 ± 4 36 ± 3 0.74

STAI-Trait 43 ±5 46 ±5 0.17

POST STAI-State 39 ± 7 40 ± 5 0.27

number of participants, was carried out [43]. All of the algo-
rithms were implemented by using MATLAB v8.6 endowed
with an additional toolbox for statistical mapping, i.e.,
LIBSVM [44].

3 Experimental results

As DistEn remains stable in physiological signals over
m = [2 − 5], changing as a function of the number
of samples and B [26], we firstly report on how DistEn
calculated in our 108 RR interval series of 110 s changes as
a function of B. Left column plots in Fig. 3 show DistEn
trend (median and median absolute deviation) for the three

value of scale factor τ , with B = [50, 100, 150, 200, 256,
512, 1024], whereas the percentage value of the coefficient
of variation, calculated as CV % = σ

μ
× 100 (where σ and

μ are the standard deviation and the mean of all DistEn

values, respectively) are shown in the right column. These
results suggest that the median values of DistEn were
almost stable in the range B = [100, 256] , while they
tended to decrease at B = 512 and, more significantly, at
B = 1024. Minimum values of the coefficient of variation
were at B = 256. For these reasons, the parameters for the
computation of DistEn for further analyses were fixed for
the three scales at the values of B = 256 and m = 2, as
shown in Table 2.

Tables 3 and 4 show the p values obtained from Mann-
Whitney statistical tests, together with the median and
median absolute deviation (MAD) for each group, on the
four IRI sub-scales and the two STAI sub-scales. No
statistical differences were found between the ordinary and
supportive groups.

Table 5 shows results from the statistical analysis on
heartbeat linear and nonlinear dynamics. Wilcoxon sta-
tistical test was applied for each group between HRV
estimates from Vid1 and Vid2. Both groups presented statis-
tical differences between Vid1 and Vid2 for the frequency
parameters. Nevertheless, the increase of LF/HF and the

Table 5 HRV metrics
calculated during Vid1 and
Vid2 sessions for O and S
groups, expressed as (median
± MAD)

Group O Group S

Vid1 (med. ± MAD) Vid2 (med. ± MAD) Vid1 (med. ± MAD) Vid2 (med. ± MAD)

RR mean 0.76 ± 0.07 0.78 ± 0.04 0.82 ± 0.08 0.79 ± 0.07

RR std 0.05 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 0.04 ± 0.01

LF peak 0.07 ± 0.03 0.08 ± 0.02 0.06 ± 0.02 0.07 ± 0.03

HF peak 0.23 ± 0.05 0.23 ± 0.07 0.28 ± 0.03 0.27 ± 0.04

LF power 0.09 ± 0.06 0.09 ± 0.06 0.05 ± 0.05 0.04 ± 0.03

HF power 0.03 ± 0.02 0.02 ± 0.01 0.03 ± 0.03 0.02 ± 0.02

LF nu 0.61 ± 0.20 0.81 ± 0.11 0.62 ± 0.20 0.72 ± 0.12

HF nu 0.39 ± 0.20 0.19 ± 0.11 0.38 ± 0.20 0.28 ± 0.12

LF/HF 1.55 ± 1.22 4.32 ± 3.23 1.61 ± 1.17 2.56 ± 2.10

MDE1 0.92 ± 0.01 0.91 ± 0.01 0.90 ± 0.02 0.91 ± 0.01

MDE2 0.92 ± 0.01 0.92 ± 0.01 0.90 ± 0.02 0.91 ± 0.01

MDE3 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.02 0.91 ± 0.01

MDEmean 0.91 ± 0.003 0.91 ± 0.01 0.90 ± 0.01 0.91± 0.02

SD1LPPsymb 53.57 ± 3.57 50.00 ± 3.57 60.71 ± 3.57 57.14 ± 10.71

SD2LPPsymb 50.00 ± 7.14 53.57 ± 7.14 57.14 ± 7.14 57.14 ± 10.71

SD12LPPsymb 50.00 ± 7.14 53.57 ± 7.14 60.71 ± 7.14 57.14 ± 7.14

SLPPsymb 57.14 ± 14.29 50.00 ± 14.29 64.29 ± 10.71 64.29 ± 10.71

MdLPPsymb 57.14 ± 10.71 64.29 ± 3.57 67.86 ± 7.14 60.71 ± 7.14

SdLPPsymb 60.71 ± 7.14 67.86± 3.57 71.43 ± 7.14 64.29 ± 3.57

Italicized metrics indicate significant p values (p < 0.05) from the Wilcoxon statistical test between the
two sessions
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Fig. 4 Recognition accuracy for the S vs. O classification obtained
through the LOSO SVM-RFE procedure, shown as a function of the
feature number, for the three datasets. Black circles indicate the highest
accuracies

decrease of HF power n.u. are more significant in group O
than those in group S. Moreover, the values of MdLPPsymb

resulted statistically different in group O.
The pattern recognition algorithm described in

Section 2.2.5 was applied to automatically discern subjects
experiencing either supportive or ordinary doctor-patient
communication. The pattern recognition procedure was
applied for three different feature sets:

– Dataset 1: Comprising time-frequency and nonlin-
ear/complexity features;

– Dataset 2: Nonlinear/complexity features;
– Dataset 3: Comprising time-frequency features.

Figure 4 shows the recognition accuracy as a function of
the number of features ranked using the LOSO SVM-RFE
procedure, for the three input datasets.

Table 6 O vs. S confusion matrices using HRV features

Group O Group S

Group O Time-frequency-nonlinear 81.4815 18.5185

Time-frequency 51.8519 48.1481

Nonlinear 81.4815 18.5185

Group S Time-frequency-nonlinear 14.8148 85.1852

Time-frequency 48.1481 51.8519

Nonlinear 14.8148 85.1852

Italicized values indicate the highest classification accuracy for each
feature group

Values in italics are the highest rates of classification successes, in
terms of true positive and true negative, related in this case to the
nonlinear dataset and to the total dataset
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Fig. 5 DistEn as a function of the scale factor τ for groups S and O.
The values obtained are reported as mean and std

The lowest accuracy was obtained when time-frequency
parameters only were taken into account. The classification
accuracy was as low as 51.85% using the following four
features: LF nu, LF power, HF nu, and HF power.

Considering features quantifying heartbeat nonlin-
ear/complex dynamics exclusively, an accuracy of 83.33%
was achieved using three features: MdLPPsymb, SdLPPsymb,
and MDE1. When all of the features were taken as input, the
LOSO SVM-RFE procedure provides a maximum accuracy
of 83.33%, selecting the same three nonlinear features.

Table 6 shows the confusion matrices from the SVM
classification of the O vs. S groups using the three datasets.
They refer to the maximum accuracy obtained for each
dataset.

MDE values for the two groups during Vid1 and Vid2 are
reported in Fig. 5.

4 Discussion and conclusion

We studied linear and nonlinear heartbeat dynamics in
two groups of healthy women watching a bad-news
consultation video, where clinical information was provided
with or without supportive comments by the clinician. The
experimental procedure and video were already validated in
the literature [11]. To our knowledge, our study is the first
attempt to investigate a comprehensive set of HRV measures
during a doctor-patient communication.

We hypothesized that the different heartbeat complexity
quantifiers calculated over different time scales would
provide meaningful information on the emotional reaction
of the subject, because of the continuous brain-heart
interplay. Accordingly, we calculated HRV features defined
in the time and frequency domains, as well as from two
nonlinear dynamics methods. This study is an extension
of [52], in which we investigated heartbeat dynamics from
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34 subjects divided into the two groups, and demonstrated
the effectiveness of the multi-lag analysis through the
LPPsymb. Here, we increased the number of participants to
54, and applied the LPPsymb also to Md and Sd quantifiers of
LPP, together with a multi-scale analysis of the RR interval
series. Specifically, we adopted a multi-scale approach for
the quantification of the degree of complexity at different
time scales, i.e., the multi-scale DistEn (MDE), because of
its ability to quantify complexity in ultra-short series [20].

We chose to employ the LPPsymb method instead of com-
puting the traditional symbolic indexes directly from RR
interval series [49, 50, 58] because the LPPsymb approach
investigates the symbolic dynamics in a hyperdimensional
space given by the first M Poincaré return maps, where M

is the range of lags. The application of this approach on
both linear-related Poincaré plot quantifiers (SD1 and SD2
[59]) and all the other quantifiers described in Section 2.2
allowed us to investigate heartbeat dynamics comprehen-
sively from the beat-to-beat structure displayed by the LPP
over 30 lags. Note that, in a previous study, we demon-
strated the reliability of LPP quantifiers extracted from RR
interval series comprising 35–60 samples, along with its
discriminant power in affective elicitation protocols [31].
Therefore, it is possible to consider 100 samples enough
to derive reliable LPP parameters. Concerning the compu-
tation of DistEn, we explored its dependence on the value
of parameter B, before applying it on the scaled series. We
investigated seven values of B in the range [50, 1024] and
we chose B = 256, which showed the lowest coefficient of
variation for our RR series (see Fig. 3).

We recruited female participants only, therefore avoiding
gender differences and biases in the assessment of ANS
responses to supportive communication.

Non-parametric statistical analysis on IRI and STAI
questionnaires demonstrated that the ordinary communica-
tion (O) and supportive (S) communication groups were
not different in terms of feeling empathy and anxiety. Sta-
tistical analyses on heartbeat dynamics suggested a higher
sympathetic activation, after the video elicitation, in sub-
jects of the O group than S ones. This is suggested by
the different magnitudes of increase/decrease of HRV fre-
quency domain parameters in the groups, as well as by
the reduction of heartbeat complexity observed in the O
group (see Fig. 5). Note that recent evidences demonstrated
how a sympathetic modulation on cardiovascular variability
can be assessed through multi-scale entropy analysis [45,
46]. In previous studies, a progressive decrease of complex-
ity was found in humans during an experimental protocol
known to produce a gradual shift of the sympathovagal bal-
ance toward sympathetic activation, i.e., as a function of the
tilt table inclination [55], and in rats during an increased

sympathetic modulation, acting as a negative factor for the
overall cardiovascular complexity regulation [56]. On the
other hand, higher complexity was associated with good
affective balance and healthier mental states [48].

To move from a group level to a single subject-level
of analysis, a pattern recognition procedure based on
SVM-RFE algorithm was applied to automatically discern
heartbeat dynamics gathered from a subject experiencing a
specific psycho-physiological state. Our results confirm the
crucial role of heartbeat nonlinear and complex dynamics
in characterizing supportive doctor-patient communication.
Highest recognition accuracy between groups has been
achieved, in fact, when MDE and LPPsymb measures were
taken into account.

At a speculation level, our results link empathic doctor-
patient communication to the so-called central autonomic
network [1], through which the brain controls visceromotor,
neuroendocrine, pain, and behavioral responses. It is rea-
sonable, in fact, that the multi-feedback and cross-system
loops generating heartbeat complex dynamics [21] are also
influenced by the paraventricular and other hypothalamic
nuclei containing mixed neuronal populations that control
specific subsets of preganglionic sympathetic and parasym-
pathetic neurons.

Our study presents some limitations, which may repre-
sent the starting point of future endeavours in the fields
of HRV nonlinear analysis, and the assessment of auto-
nomic dynamics during empathic communication. First, a
detailed study on the reliability of DistEn also in time
series shorter than 50 samples (lowest limit studied in the
literature [20, 26]) should be performed. In this way, the
effects of sympathetic activation on heartbeat complexity
could be properly investigated. Also, the uniform binning
procedure used in the MDE complexity estimation could
affect the experimental results. Future research is needed to
properly investigate these potential biases, eventually test-
ing previously proposed correction procedures [57]. Further
research is also needed to test possible biases related to
the coarse graining procedure. Concerning the experimen-
tal protocol, a limitation is represented by the involvement
of healthy subjects. Indeed, it would be very difficult to
study ANS dynamics in subjects who are actually affected
by cancer, and are monitored the very first time this bad
news is received. Therefore, we state that our study dealt
with highly arousing, highly unpleasant emotional elicita-
tion whose associated ANS dynamics might be affected
by the presence of emphatic communication. Finally, as
we assessed female subjects exclusively, the assessment of
psycho-physiological changes during emphatic communica-
tion in male subjects would be useful to investigate possible
gender differences.
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